
With its optimising compiler
and efficient VCL class

library, Delphi produces applica-
tions that run much faster than
those from interpreted products
such as Visual Basic. However, the
methodology employed in VCL for
screen updates has been simplified
to ease programming. The down-
side is that it can be inefficient
under certain circumstances.

In this article I will introduce you
to two techniques to optimise
screen updates which require only
a few simple additions to your
painting code. To illustrate this I
have a written a sample applica-
tion, FASTDRAW, which is included
on the free disk you’ll receive with
Issue 2. As a bonus, I have also used
code that illustrates the use of
Windows complex regions for
painting, exception handling to
protect allocations of Windows
resources and how to copy areas
directly from and to the screen.

So to begin with, let’s go back to
first principles. When a window is
created, or revealed by moving
another window, for example, the
parts which were previously
obscured and have now been made
visible need to be painted. We call
these areas invalid regions.

Windows maintains a list of
invalid regions and responds to the
need for updates by sending mes-
sages to the appropriate windows
to tell them to repaint themselves.
In Delphi applications, the VCL
receives this message for you and
calls the Paint method of your com-
ponent or form. If you have
installed an OnPaint handler this is
called too.

However, Windows supplies
extra information to help you opti-
mise the update but VCL does not
pass this on to the Paint method or
handler. It is non-essential informa-
tion, your windows will look fine
without it. The problem is that they
may repaint much slower than
necessary because in many cases
only part of the window needs

repainting. But because VCL
doesn’t tell you which part, you
just have to code your paint
method to paint everything. What
you need is that extra information.

Fortunately, the Windows API is
fairly helpful in this respect. There
is a simple function which you can
call to get a TRect that completely
surrounds the invalid region. Then,
all you need to do is check which
parts of your form or component
intersect that area and paint those.
It may sound complicated but it’s
not. It’s time to look at the sample.

Ellipses, Ellipses, Everywhere
The sample program simply
creates a random pattern of ellip-
ses of different colours spread out
to cover an 800 by 600 pixel form.
However, when the form first
appears it is considerably smaller
than this. The form has a toolbar
with a checkbox that switches
optimised painting on and off.
When it’s off, the paint method
blindly paints every ellipse
whether it needs to or not. When
the form is in its initial size, for
example, only about a quarter of
the total number ellipses are
visible, but it tries to draw all of
them anyway. Of course, Windows
makes sure that the ellipses
outside the window don’t appear,
but it still does all the calculations,
which wastes a lot of time. For a
comparison see Figures 1 and 2.

I have defined a TEllipse class,
shown in Listing 1. Notice the Rect
field. It’s a good idea to add a rect
to classes that you are going to
display so that you can quickly
determine if they need to be drawn.
TEllipse’s Paint method simply
sets the line and fill colours and
calls TCanvas.Ellipse.

Now let’s look at the Paint -han-
dlers for the form. I ’ve written two
of these, one “dumb” and the other
“smart”. When you change the op-
timised checkbox, the appropriate
handler is assigned to the form’s
OnPaint property. The “dumb”

paint method simply iterates
through the list of ellipses and calls
their Paint methods as declared
above. The loop looks like this:

for i := 0 to
 Ellipses.Count - 1 do
 TEllipse(
 Ellipses[i]).Paint(Canvas);

When you check optimised, the
other, “smart”, OnPaint handler is
assigned. This has additional code
to optimise painting. It does this by
calling the Windows procedure
GetClipBox which gets the TRect
that encloses the invalid region.
Then it iterates through the ellip-
ses as before but uses the
IntersectRect function to check if
any part of each ellipse intersects
the invalid rect to see if it needs to
call TEllipse.Paint:

GetClipBox(Canvas.Handle,
 ClipRect);
for i := 0 to
 Ellipses.Count - 1 do
 with TEllipse(Ellipses[i]) do
 if IntersectRect(ARect,
 Rect, ClipRect) <> 0 then
 Paint(Canvas);

When you get your disk, try
running the sample. Press the
‘Repaint all’ button with and
without optimised drawing and
note the difference in the times
displayed on the toolbar. On my
system I get a twelve-fold increase
in speed! Interestingly, the time to

Optimising Display Updating
by Mike Scott

type
 TEllipse = class(TObject)
 protected
 LineColor : TColor;
 FillColor : TColor;
 public
 Rect : TRect;
 constructor Create(
 const ARect : TRect;
 ALineColor : TColor;
 AFillColor : TColor);
 procedure Paint(ACanvas :
 TCanvas); virtual;
 end;

Listing 1

10 The Delphi Magazine Issue 1

repaint the form using the dumb
technique is substantially longer
when it is not maximised because
of the extra calculations which
Windows performs to clip each
ellipse to the visible region. In
contrast, the optimised method
takes less time as the form is
reduced in size.

If you maximise the running
form, there is virtually no speed
difference between dumb and
smart redraws because all the ellip-
ses have to be drawn in both cases
anyway. The good news is that the
additional code that is executed in
the optimised case is so fast that
you shouldn’t notice any increase
in the time recorded.

If you press the ‘Ellipses...’
button you can change the number
of ellipses on the form. You will
really notice the difference with a
large number, say 500 or more.
Also, you should try moving the
‘Ellipses...’ dialog around and
noting how long it takes to repaint
the revealed area.

You may notice that there is no
repaint if you simply close the
dialog without moving it. In this

Figure 2

Now notice the
difference in
repaint time with
optimisation!

The comparison
when only one
ellipse is repainted
(Repaint one) is even
more staggering.

Figure 1

Repainting all the
ellipses without
optimisation

case, Windows has decided to take
a copy of the background and
replace it when the dialog is closed.
Moving it forces a repaint and
Windows discards the noted area.

Reducing Flicker
VCL has another simplification
that can cause another type of
annoyance – flicker.

Windows provides a function to
invalidate an area of a window to
force a paint message to be sent.
VCL, however, supplies an invali-
date method but this invalidates all
of the component or form and tells
Windows to erase the background
before painting. This erase and
then paint causes excessive flicker.
A much better way is to erase only
the rect that you want to redraw.

The ellipse sample program has
an example of this. When you press
the ‘Invalidate one’ button, a single
ellipse is chosen at random and
invalidated. This causes Windows
to send a paint message and the
optimised handler only updates
the rect for that ellipse. So if you
only need to update a part of your
component or form, instead of

calling its Invalidate method, call
the Windows API InvalidateRect
function instead. Here is the
sample code that does this:

var InvalidRect : TRect;
begin
 ...
 InvalidRect :=
 TEllipse(
 TempList[Random(
 TempList.Count)]).Rect;
 InvalidateRect(Handle,
 @InvalidRect, true);

It’s not necessary to copy Rect into
InvalidRect but I did so for clarity.
InvalidateRect takes three parame-
ters: the first is a window handle
which you can get from the form or
component’s Handle property. The
second is a pointer to a TRect, so
remember to prefix it the ‘@’ or
you’ll get ‘Error 26: type mismatch’
when you try to compile. The last
parameter is a boolean that tells
Windows whether to erase the
background or not. You should
generally set this to true. Setting it
to false can produce some unusual
effects and is not recommended
until you know what you’re doing!

Regions
As I said at the start, I’ll give you a
bonus by including some region
handling code. You might notice
that I draw a thick frame around
the ellipse when you click the
‘Invalidate one’ button to attract
your attention to the area being
drawn. The code inverts the frame
and then inverts it again when the
drawing is finished which restores
the screen to its original state,
preventing the need for invalida-
tion and repainting.

I achieve this by using a region.
This is an area which can be any
shape and can include holes and
gaps. There are a number of
Windows API functions which you
use to create a complex region by
different combinations of simpler
regions. To create the frame effect,
first I create a TRect that is the size
of the outside edge of the frame
and use CreateRectRgn to create a
region from this. I do the same for
the inner edge and I have two
rectangular regions, one defining

April 1995 The Delphi Magazine 11

the outer edge of the frame and the
other defining the ‘hole’ in the mid-
dle. I then use the CombineRgn func-
tion with the RGN_DIFF operator
which gives me a region which is
the difference of the two. This
effectively removes the ‘hole.’ I can
then invert the region using the
InvertRgn function. The code is in
Listing 2.

Note the use of try blocks to
protect the allocation of the region
resources which Windows will not
free automatically, even after the
program quits. If you’re not careful
when writing Windows code you
can end up with severe resource
leakage. A good habit to get into is
to automatically type a try state-
ment on the line following any allo-
cation or operation which you
have to undo or tidy up later. I then
often type in the finally...end with
the cleanup code before I even put
in the rest of the lines. That way I
am sure it won’t be forgotten and
it’s easier to follow the indentation!

I use try...finally to deallocate
the two source regions because

they must always be freed whether
there is an exception or not. I use
the try...except block to free up
Result only when there is an excep-
tion. In most cases you should call
Raise at the end of your try...
except block to pass the exception
back up the stack. On the other
hand, you don’t call Raise in a
finally block because the appro-
priate processing continues
anyway. Region functions gener-
ally make a copy of any region
passed as a parameter so remem-
ber to free up the source regions as
I have done in the example.

One very powerful use of regions
is to control the clipping area when
painting. Windows allows you to
specify your own region where
painting will be allowed. In the
above example, I could have
selected the region as the clipping
region and then inverted the whole
form with:
InvertRect(Canvas.Handle,
 Rect(0, 0, Width, Height))

instead of using InvertRgn. The
result would have been the same
because Windows would limit the
invert, or any other drawing opera-
tion, to the area defined by the
frame region. This is a very power-
ful technique which you can use to
fill or paint complex shapes.

Direct From
The Screen And Back...
You may have noticed that I
overlay a rectangular red box
containing some text along with

var ABitmap : TBitmap;
begin
 ...
 ABitmap := TBitmap.Create;
 try
 ABitmap.Width :=
 DestRect.Right;
 ABitmap.Height :=
 DestRect.Bottom;
 { grab the pixels from
 the form’s canvas }
 ABitmap.Canvas.CopyRect(
 DestRect, Canvas,
 SourceRect);
 { ... do whatever you need
 to do ... }
 { & copy pixels back again}
 Canvas.CopyRect(SourceRect,
 ABitmap.Canvas, DestRect);
 finally
 ABitmap.Free;
 end;

Listing 3

function
CreateFrameRegion(const ARect :
 TRect) : HRgn;
var Region1, Region2 : HRgn;
begin
 { creates a “frame” area using
 regions as an illustration -
 also illustrates protecting
 code with try blocks }
 with ARect do begin
 Region1 :=
 CreateRectRgn(Left - 6,
 Top - 6, Right + 6,
 Bottom + 6);
 try
 Region2 :=
 CreateRectRgn(Left, Top,
 Right, Bottom);
 try
 Result := CreateRectRgn(
 0, 0, 0, 0);
 try
 { remove region 2 from
 region 1 and delete
 the source regions }
 CombineRgn(Result,
 Region1, Region2,
 RGN_DIFF);
 except
 DeleteObject(Result);
 Raise;
 end;
 finally
 DeleteObject(Region2);
 end;
 finally
 DeleteObject(Region1);
 end;
 end;
end;

Listing 2

the inverted frame when the ‘Invert
one’ button is pressed. When the
frame is removed, so also is the
text box but there is no time-
consuming paint. I achieve this by
creating a temporary memory
bitmap the size of the box and
using its canvas to copy the area
straight off the screen. To remove
the box, all I need to do is copy the
area back when I’m finished.

Performing this update trick is
actually very simple. You use the
canvas CopyRect method which
does all the work. All you need to
do is create a bitmap, set its width
and height and use this method to
grab the pixels from the screen.
When you’re done you use CopyRect
in the reverse direction to put the
pixels back again and then just free
the bitmap. Simple! The code is in
Listing 3.

DestRect is a TRect that defines
the area on the form on the screen.
In this case the other canvas used
in CopyRect is that of the form, but
it could be any other canvas. Again,
I use try...finally to make sure
ABitmap gets freed at the end.

You can use a similar technique
to completely banish flicker alto-
gether. Instead of painting straight
on to the form’s canvas, you create
a bitmap just like the above code
fragment, set the width and height
to the width and height of the area
you’re updating on the form, paint
to the bitmap’s canvas and then
use CopyRect to blast the result
straight on to the screen with no
trace of flicker at all. Because you
are not going across a bus to the
screen card with every drawing
operation, this technique is often
faster than the usual method of
writing direct to the form’s canvas.
Space does not allow a proper
example or full details. That is the
topic for another article...!

Mike Scott is a Director of Mobius
Software which specialises in
Delphi VCL component tool kits
and applications and is based in
Edinburgh, Scotland. He can be
contacted via CompuServe at
100140,2420 (on the internet it’s
100140.2420@compuserve.com), or
telephone +44 (0)131-467 3267

12 The Delphi Magazine Issue 1

	Ellipses, Ellipses Everywhere
	Reducing Flicker
	Regions
	Direct From the Screen And Back....

